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Abstract 

This paper develops a primal simplex procedure to solve transshipment 

problems with an arbitrary additional constraint.  The procedure incorporates 

efficient methods for pricing-out the basis, determining representations, 

and implementing the change of basis. These methods exploit the near 

triangularity of the basis in order to take full advantage of the computational 

schemes and list structures used in solving the pure transsipment problem. 

We also report the development of a computer code, I/O PNETS-I for solving 

large scale singularly constrained transshipment problems.  This code has 

demonstrated its efficiency over a wide range of problems and has succeeded 

in solving a singularly constrained transshipment problem with 3000 nodes and 

12,000 variables in less than 5 minutes on a CDC 6600.  Additionally, a fast 

method for determining near optimal integer solutions is also developed. 

Computational results show that the near optimum integer solution value is 

usually within a half of one percent of the value of the optimum continuous 

solution value. 
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1,  INTRODUCTION 

In this paper we consider the capacitated transshipment problem which 

contains an additional linear constraint.  The pure transshipment problem 

is well known for its wide range of practical application and for the facility 

with which it can be solved.  Many linear programming models are formulated 

as transshipment problems in order to gain computational efficiency. 

Researchers have developed special purpose transshipment algorithms that 

are roughly 150-300 times faster than general purpose linear programming 

codes [2,17,24,30,32] for solving transshipment problems. 

Unfortunately, this significant gain in efficiency is usually lost 

upon the addition of a single extra constraint.  In related constrained 

transportation problems, researchers have investigated certain classes of 

extra constraints which allow a transformation of the singularly constrained 

transportation problem to an enlarged equivalent transportation problem 

[3,4,5,6,7,26,33].  The paper  [26J  describes similar transformation tech- 

niques in a transshipment context. Many constrained network problems, however, 

cannot be transformed into a transportation or transshipment problem, and 

thus a technique for solving any constrained transshipment problem efficiently 

is needed. 

In this paper, a specialized primal simplex procedure is developed which 

is applicable to capacitated transshipment problems with an arbitrary extra 

constraint.  The procedure is a specialization of the algorithms developed in 

[4,27,28,29] for handling an arbitrary number of extra constraints.  Computa- 

tional results indicate that our solution procedure is at least 75 times 

faster than state-of-the-art general purpose linear programming codes in 

solving this class of problems. 
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The addition of an arbitrary additional constraint may destroy the 

integrality of the solution to a transshipment problem.  Thus, a very simple 

and fast procedure is proposed for determining a near optimal integer solution 

for such problems, whenever the additional constraint is an inequality. 

There are a number of applications which lie within the domain of 

singularly constrained capacitated transshipment problems.  For example, in 

real-world transshipment problems, the modeller is often faced with two 

objectives or goals (such as, maximizing profit while minimizing shipping 

time).  Other applications include problems that can be formulated as a 

transshipment problem with extra linear constraints where an integer solution 

is required.  The code development discussed in this paper makes these prob- 

lems amenable to solution via surrogate constraint techniques (see, e.g., 

[1,11,12,13,14]). 

2.  PROBLEM DEFINITION AND BASIS PROPERTIES 

A capacitated singularly constrained transshipment problem may be stated as; 

minimize 
Z     c . . x . .    OS 

(i,j)eA  « ^ + 

subject to: 
-Y, x. .  +   Z     x--    =      -t     '     ieN 

(l,j)fA   ^     (1,i)cA   ^ 
(1) 

0  -  V   -   V   '   (i'j)t: A (2) 

(3) 

where a. represents the supply (demand) at node i, .£ a =0, x.. is the 

.  ■    ■        ■ ■-'-■  —■"■■■■  ■.....■■....  ■: '■.■■          . ■-■ ..:.->-.^  
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flow früin node i to node j on arc (i,j), N is the set of nodes in the 

network, A is tue set of arcs in the network, c . is the cost on arc (i,.j), 

and U., is the upper bound on arc (i,j).  (Note that the f  in (3) may 

be positive, negative, or zero.) 

The dual problem is: 

ma vim-!-70      S    a.W.   -       2       W..U. .   +  k6 
maximize   .^  i t     (i.-j)^  ^ ^ 

subject to: 
-w, + w. - w.. + f. ,6 < c,.  , (i,j)eA (4) 

w.  unrestricted, icN 

w. .  > 0        (i,j)eA 

(6  > 0,    6-unrestricted,  6 < 0 depending on  (3)) 

Graphically, the problem may be viewed as a network flow graph whose 

arcs have "flags" (i.e., additional numerical values) corresponding to the 

coefficients in constraint (3).  It is generally known that a basis for a 

capacitated transshipment problem consists of n-1 arcs which span the network 

containing n nodes [7,23].  The addition of constraint (3) to the problem 

normally increases the rank of the "incidence" matrix by one, thus requiring 

the use of n arcs in the basis of the singularly constrained transshipment 

problem.  (In the case where the rank is not increased, constraint (3) may 

be deleted without loss of generality if the system is consistent.)  Clearly 

n-1 of these n arcs will form a spanning tree with the network flow graph 

since all n nodes must be spanned.  A fundamental property of spanning trees 

is that the addition of one additional arc incident on the tree nodes forms 

precisely one closed loop with attached trees [7,23,27,28].  Thus, the basis 

for the singularly constrained transshipment problem may be characterized 

-" - ■' - .:-........-    : -.    .    ...-^ ..,...■ ..-._-—-^ -^ .^_  ...... -■■■„,.. ,..-■-......,...^*^^*****^M****~l**1**im*»m 
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as  a  spanning  tree plus  one additional   arc.     (Note  that   the additional 

arc may be  the slack or artificial variable S  from constraint   (3).) 

We will  show how to exploit  this  near  triangular basis  structure,   to 

yield a computationally efficient  primal  simplex procedure  for  solving such 

problems.     This specialized simplex approach yields an inverse compactifi- 

cation which greatly reduces  the  basis   information  that  has   to be stored 

between successive  iterations     and  that  correspondingly  reduces   the arith- 

metic  calculations required  in pivoting. 

3.     PRICJNG-OUT THE BASIS 

In  this section we present  special  procedures  for determining  the dual 

evaluator  values and  the updated  costs   (or  z.  -  c.  values).     Pricing out   the 

basis   is equivalent to  finding the simultaneous solution of   the equality form 

of  the dual constraints  in (4)   associated with the primal variables  in the 

basis.     Our procedure is a direct extension of  the pricing-out procedure 

given in   [16,20 ] for the unconstrained or pure transshipment problem.     The 

procedure  is a  two step approach  that  first obtains  the value of   the dual 

evaluator 6 and  subsequently determines  the remaining dual  evaluators w.. 

A value is obtained for  the dual evaluator 6 by making use of   the  fact 

that  the basis may be partitioned and stored as a spanning  tree plus an 

additional arc,  as depicted  in Figure 1.     Thus,   the arcs may be stored via 

the efficient  list structure of   [16,201   for maintaining and updating  spanning 

trees.     The  loop  present  in a basis  for  the constrained   transshipment  problem 

will  be  referred  to subsequently as   the basis  loop. 

iuiti.*,*iim*aäa*luiiumlitmm**m^-*^^._ _  _ __.^--^_.,J,^^  ■ ■ ■ .            ^  . - .,..,,1—      - ■-   '        11^ 
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extra basis arc 

Figure 1.  A possible basic for the singularly constrained 
transshipment problem. 

If we let B represent the basis arcs, then applying complementary 

slackness to the dual system (4) we have: 

-w. + w. + 5f  = c    , (l,j)E B (5) 

Thus, once 6 is known, the remaining dual evaluators can be determined im- 

mediately by setting the root node's dual evaluator w. to 0, and proceeding 

downward through the spanning tree using (5) to determine the remaining dual 

evaluators.  (Note that the w.. in (4) are omitted in (5) since they may be 

arbitrarily set equal to 0 for the basis arcs).  We now give a simple formula 

for computing the value of 6 relative to a given basis. 

Remark 1: 

An explicit solution value for 6 associated with any particular basis is: 

(6) L    c, 
F 

F  ij  R  ij 
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where F is the set of arcs traversed in the forward direction in goinp, from 

any node on the basis loop back to itself, and R is the set of arcs traversed 

in the reverse direction. 

Proof:  The proof is straightforward and only involves an examination of the 

subsystem of dual equations associated with arcs in the basis loop.  Let node i 

be some node on the basis loop.  The result may be established by solving 

for w. in terms of 5 and w using (5) and then solving repeatedly for each 

successive variable w. on the basis loop in terras of the preceding using (5). 

When node i is re-encountered and the resulting w is substituted into (5), 

equation (6) is derived. 

Note the ease with which 6 can be computed if the basis is stored as a 

spanning tree via [16,20] and an extra basis arc.  In particular, only a 

simple trace of the basis loop is required keeping two accumulators.  Having 

determined the value of 6, the remaining dual evaluators can be easily 

determined (as indicated earlier) by proceeding downward through the spanning 

tree. 

Using Remark 1, it is clear that the value of 6 changes from basis to 

basis if and only if the basis loop changes.  Thus, the previously described 

pricing-out procedure is only required at those iterations in which the arc 

leaving the basis is also in the basis loop.  If, however, the leaving arc 

is not in the basis loop, then 6 does not change and it is not necessary to 

update 6 or all of the w dual evaluators. 

To he precise, suppose arc (r,s) is to enter the basis.  The updated 

cost of this entering arc is c   ■ c  + w - w - f 6.  The new updated w 's valui's 
rs   rs   r   s   rs r 

can be obtained by adding + c  to one of the two subtrees created when the 

i  inna 
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arc leaving the basis is deleted.  Normally the subtree not containing the 

root node of the basis tree [16 1 would be updated.  More specifically, if 

node r is a member of the disjoint subtree to be updated, then c  is sub- 
J r    '      rs 

traded from all w 's associated with nodes in this disioint subtree. 
i 

However,   if   node  s   is a member of   this  subtree   then    c       is added  to  all w  's 
rs i 

associated with nodes in the subtree.  The validity of this procedure 

follows directly from the fact that (5) holds for the new basis using the 

updated w. values.        That is, (5) holds for arcs in the basis contained 

in the non-updated subtree since (5) held for these arcs in the old basis. 

Further, (5) holds for the entering arc (r,s) and the arcs in the updated 

subtree bv construction. 

4.  CHANGE OF BASIS PROCEDURES 

This section characterizes procedures for determining the vector repre- 

sentations of the arc entering the basis, the vector to leave the basis, and 

the updated basic flows.  We provide a connection between the calculation 

of 6 in the preceding section and calculations involved in carrying out the 

remaining change of basis steps, thus, enabling the latter steps to be carried 

out with marginal additional effort. 

First, consider rh( determination of the representation of the arc (r,s) 
'S 

which is to enter the basis.  Let P  denote the column of the incidence 
rs 

matrix associated  with arc   (r,s)   and   let  P       denote  that  portion of  P 
rs r rs 

associated with the underlying pure transshipment problem; F  is an n+1 

component vector, whereas P  is an n component vector. 
rs 

Two  observations  lead  to  an efficient way  to determine  the  representation 

of   the  entering arc   (r,s).     The  first n components of   the representation of 

 .—- — - —- -..     -■.- --.   — - . _   mm^lltim^tm^äli-mili 
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P  may be obtained from a linear combination (consisting only of +1 s 
rs  J 

and -1's) of certain arcs in the basis tree.  These arcs correspond to 

the arcs in the loop created when arc (r,s) is added to the current basis 

tree.  See Figure 2. 

non-basis loop 

entering arc 

Figure 2.  Illustration of basis and non-basis loops. 

The last component of the representation of P  may be obtained from 

a linear combination (consisting of +l,s and -1's) of the arcs in the current 

basis loop.  Let the arcs (i^i^, (i^lj),..., (1 , 1^) comprise the current 

basis loop. 

Then clearly 

+1 P IP. + IP. + 
1 i.. i-. 

- P.  = \       0 
i   V  T    f  - E     f • 
p  * (ifj)eF ij (i,j)eR  ! ! 

(7) 

where F and R are the sets of forward and reverse arcs defined earlier. 

If we let NF and NR,respectively, denote the set of arcs traversed in the 

forward direction and the set of arcs traversed in the reverse direction 

in the non-basis loop ingoing from node r to node s. 

 , .__ - i  ..-■.^■-.-^.■.■.^^■:. .-■■^..i ■"'^'■-fllMlilMrrri'irfrtf^l-'l'iil-rr^iH ■■ " •■ ■; —-' ^■^■^■-^^^"^^iff-t---Tr^ti>^-1^^ 
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then we  ein determine  the  rcprosentaLlon of   P    via 
rs 

rs 

Z f. . -  Z    f. . I  + e 
(i,j)cNF ij   (l,j)ENR ij 0 

f-. " . 2.   f 
(i.j)eF  ^  (i,j>£R  ^ 

which implies 

9 = frS "  (i,j)£NF fij +  (i)j)eNR 
fij (9) 

(i^j)eF fij " (i?j)eR fij 

Note that the denominator in (9) is known from the 6 calculation.  The 

denominator in (9) is also non-zero, since the arcs in the current basis 

loop are linearly independent.  Thus, the representation of the entering 

arc is obtained by attaching +l's and -1's to the arcs in the non-basis 

loop and G's and -6's to the arcs in the basis loop.  In the special cases 

where the slack or artificial variable S is entering or leaving the basis, 

expressions (8) and (9) are further simplified by means of analogous ideas. 

(We omit these simplifications for the sake of brevity.  The working paper [28] 

describes these simplifications in detail for constrained transportation 

problems.) 

In determining the arc to leave the basis and the updated flows, there 

are essentially two cases.     In case 1 the basis loop and the non-basis 

loop have no arcs in common; in case 2 the loops overlap. 

Case 1(a):  9=0 

The arc to leave the basis is in the non-basis loop and the pivot step 

:^^..^.^.,..-.^i.HJ^^.-.iJ..^.„^:.^...:^.. -■-;.„.,^..■■....    ■     ,-: '..■■■:.   —-■"! ^tjfrl ■■■ -Ji   -^ ,...,,., .,    „; «m.yw... .^^ ..^^ 
...--.  ^■..■■.,ri».i     .1  aiui i . .   .■   •:  -      -■-   .•-.■.. 
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is identical to a pivot for a pure transshipment problem. There are two 

subcases depending on whether the arc entering the basis is at its upper 

or lower bound. 

« 

Case 1(b):  6^0 

Minimum flow change values must be computed for both loops and the arc 

associated with the smaller of these minimum flow change values is selected 

to leave the basis.  There are four possible subcases depending on whether 

8 is less than zero or greater than zero, and whether the entering arc is 

at its upper or lower bound. 

Case 2(a):  9=0 

Same as case 1(a) . 

Case 2(b):  0^0 

The minimum flow change must be computed on each loop's non-overlapping 

arcs and on the overlapping arcs.  These minimum flow change values depend 

on the signs of 6,  9+1, and the condition of the arc entering the basis 

(i.e., whether it is at its upper or lower bound). 

It is important to note that the calculation of 0 and the determination 

of the arc to leave the basis is made particularly easy by keeping the basis 

stored as a spanning tree and an extra basis arc. Additionally, once the 

flow change value y has been determined, the flows can be quickly updated by 

traversing the non-basis loop one more time and adding or subtracting y from 

its current flow depending on the direction and "bound condition" of the arc, 

Similarly, the flows on the basis loop can be updated by traversing arcs and 

MMIlliiiirrirMiinitiitoitol-n tv,, {-, iiin'wiinli-niiiiiMT  iliWilMMIIiteMtMMMMlMitoiiiliMIMIIfcMim 
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adding or subtracting Qy  as appropriate. 

5. BASIS PARTITIONING 

The partitioning of the basis into a spanning tree and an extra arc is 

quite easy to maintain from basis to basis.  The partitioning is automatically 

preserved if the arc leaving the basis is not contained in the basis loop; 

that is, in this case, the entering arc may be pivoted into the spanning tree 

segment of the basis in the same manner as for a pure transshipment problem 

[16,20]. 

When the arc leaving the basis is contained in the basis loop and is not 

the extra basis arc, the basis partitioning can be preserved simply by pivoting 

the current extra basis arc into the spanning tree in place of the arc leaving 

the basis.  The arc enterirg the basis then becomes the new extra basis arc. 

Finally, if the arc leaving the basis is the extra basis arc, then the 

entering arc simply becomes the new extra arc and no further updating is re- 

quired.  The validity of this procedure is established by observing that the 

entering arc and the current spanning tree will never yield a loop in the 

new hypothesized spanning tree since an arc contained in the loop created by 

the entering arc in the old spanning tree is always being deleted. 

6. BASIC STARTING SOLUTIONS 

A basic "feasible" solution for the singularly constrained transshipment 

problem may be obtained by applying any basic starting method for a trans- 

shipment problem [7,15 ,24] and then adding an appropriate slack or artificial 

variable (as determined by equation (3)) to this spanning tree.  Another way 

    ■ . - ■  ■--  ..-..■:-..-i.    ■- .■--■■-'-■•■   ■■■':  -^ - -  -:■  J...... 
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of obtaining a good basic start is to use a basic optimal solution to the 

underlying transshipment problem. 

In this paper, we have tested two or three versions of each of four 

distinct starting rule procedures.  One of these uses the optimal solution 

to the underlying transshipment problem.  Another uses the modified row 

minimum start [15] which has proven to be computationally best for solving 

pure transshipment problems.  The third procedure uses the modified row 

minimum start but gives priority to arcs with a positive f . if (3) is a 

"greater than or equal to" constraint.  The fourth method uses a Lagrangean 

relaxation approach [8,9,11,22,31]  to obtain a basic optimal solution to 

a pseudo-transshipment problem.  These starts will be described in more detail 

in the next section. 

7.  INTEGER SOLUTION 

The optimal solution to a singularly constrained transshipment problem 

may not be integer valued even if the parameters are integers.  However, 

if the additional constraint (3) is an inequality constraint, an integer 

solution (except possibly for S) may be obtained by simply pivoting the 

slack variable S into the optimal basis.  If the right hand side and 

capacity parameters of the underlying transshipment problem are integers, 

the resulting solution will be integer valued in the x.. since the basic 

x.. corresponds to an extreme pivot of the underlying transshipment prob- 

lem. 

The slack variable S may always be pivoted into the optimal basis 

if the problem is capacitated since the representation of the slack 

is non-zero.  (If the problem i«? uncapacitated it can be capacitated without 
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loss of generality in most practical settings by restricting the flow 

on each arc to be less than or equal to the total supply.) The results 

in the next section indicate that this single pivot procedure provides 

a good integer solution.  In particular, the integer solution objective function 

values for the problems solved using this approach were always within .007 of 

the optimal continuous solution value. 

8.0 COMPUTATIONAL RESULTS 

8.1 TNTRODUCTION 

In order to test the proposed efficiency of the preceding algorithm, 

we designed and implemented the computer code I/O PNETS-I.  The main 

computational routine of I/O PNETS-I is a modification of the in-core 

out-of-core transshipment code I/O PNET-I.  I/O PNET-I is a state-of-the- 

art code for solving large scale transshipment problems [24].  (This code 

recently solved a problem with 5000 nodes and 625,000 arcs in less than 

10 minutes on a CDC 6600. A modified version of 1/0 PNET-I, developed by 

Analysis, Research, and Computation, Inc., is capable of solving problems 

with 50,000 nodes and 62 million arcs on a CDC 6600, UNIVAC 1108, IBM 360/65, 

or IBM 370/155.) 

The computational results reported in this section indicate that 

1/0 PNETS-I is able to solve singularly constrained transshipment problems 

in approximately twice the time that 1/0 PNET-I can solve the underlying 

transshipment problem.  (1/0 PNET-I [24] has been shown to be 150-300 times 

faster than the state-of-the-art linear programming code OPHELIE/LP.)  Also, 

1/0 PNETS-I can solve singularly constrained transshipment problems which are 

.   —. —. —  — •— —■      ■-——^-  mi liiriiiiiiHii-liiiiiariiiiinrtiMHiyirtiiiiaitu     i iM ■-■■■ila.i■  J.^-^—.,,. 
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as large as the transshipment problem hand led by 1/0 PNKT-I. 

8.2 OVERVIEW OF 1/0 FNETS-I 

The I/O PNETS-I computer code is written In FORTRAN TV.  It was 

initially tested on a CDC 6600 with a maximum core memory of 130,000 

words usin« the RUN compiler.  The code uses the augmented threaded index 

method [20] to store and update the basis data.  The code keeps all of the 

basis data in centii1 memory which requires seven node length arrays.  The 

arc data are stored on a sequential access disk file.  The arc data are 

brought (paged) into central memory in accordance with a specified buffer 

(page) size B .  The code keeps a list of arcs of size Br in central memory 

whose flows are equal to their upper bounds but are not recorded in the 

arc data on the disk file. This list of arcs includes those arcs whose 

flows are not equal to their upper bounds but are so recorded in the arc 

data on the disk file. When all arrays are dimensioned to 1, the code re- 

quires 9000 words of central memory.  In general, to solve a singulai ly 

constrained transshipment problem with N nodes and A arcs (without exploiting 

the word size of the machine) requires 

7|N|+ 33 + 9000 words if the problem is uncapacitated 
and 

7|M| t- 4B + B + 9000 words if the problem is capacitated 

where B  is the number of arcs in the arc page buffer and B is the number 
A L 

of arcs in the capacity buffer. 

It would be possible, by exploiting the fact that the costs and node 

numbers are integer valued, to store more than one of these data entries per 

word and in this manner reduce the storage requirements.  However, our purpose 
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was to develop a code whose capabilities do not depend on the unique charac- 

teristics of a particular computer (such as word size).  The obvious advan- 

tage of this approach is the ease with which it enables the code to be 

tested on different machines.  Further, a "manilla" FORTRAN IV was used so 

that re-coding to fit differing machine configurations would be minimized. 

Within these constraints, we sought to minimize storage requirements, at 

the same time making sure the code could solve the "thoroughly general" 

singularly constrained transshipment problem.  Thus, for example, the code 

is designed to allow multiple arcs between the same nodes and to handle 

arbitrarily capacitated problems; thereby making it possible to accommodate 

piecewise linear convex cost minimization.  A standard translation of 

variables with non-zero lower capacities Is performed upon inputing the 

problem in order to make all such capacities equal to 0 and hence eliminate 

a capacity buffer for lower bounds. 

The program consists of a main program and ten subroutines, and may 

be conceptually depicted as in boxes 1-6 in Figure 3. During the development 

and testing of the code 30 statistics were kept on each problem.  These 

statistics ranged from time spent reading and writing disk records to the 

number of artificial arcs in the starting basis.  Unfortunately, it is not 

possible to present all of these statistics in a concise and understandable 

format.  Thus, we have chosen to report the following statistics:  the total 

solution time (time spent in boxes 2-6), the number of pivots, the total 

pivot time (total time spent in boxes 3-6), total time and 

number of pivots spent in the Lagrangean search, and the total solution time 

and total number of pivots required to solve the underlying transshipment 

problem. 
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Pivot 
Process 

r*" 
1.  INPUT                                     ; 

Create a sequential access disk file which            t 
contains the cost.c.., extra constraint              j 
coefficient f... ana capacity II.. of each            I 

i               i 
arc (i,j)£A. 

X 
2.  START 

Find a basic primal feasible start (possibly         1 
with artificial arcs) to the problem and de-         I 
termine the augmented threaded index lists           | 
for the starting basis and the dual evaluatör        | 
values.                                          1 

I 
3.   OPTDiALlTY 

Sequentially page the arc data into central 
memory and check for a nonbaslc arc that 
violates dual feasibility.  If none exists, stop. 

^± 
4. LOOP 

Find the basis equivalent path associated with 
the incoming nonbasic arc and alter the flow 
values along the basis and non-basis loops. 

^1 
5.   PURGE 

Check the capacity buffer and decide if the 
buffer should be purged.  If so, purge the buffer, 

iL. 
6.   UPDATE 

Update  the augmented  threaded  lists   to maintain 
the basis  partitioning and  the dual  evaluator values 
for   the new basis. 

Figure   3 

Flow Diagram  for   the   In-Core    Out-of-Core  Primal Singularly Constrained Transshipment  Code 

J 
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8.3 SCOPE AND PURPOSE OF THE COMPUTATIONAL STUDY 

The primary purpose of the computational study is to determine the 

best start and pivot rules to use in conjunction with the preceding algo- 

rithm for solving different types of singularly constrained transshipment 

problems. Another purpose is to evaluate the adequacy of the integer solution 

provided by pivoting the slack variable into the basis. 

To conduct the testing seventy five feasible problems were generated. 

All of the problems have costs which range between 1 and 100, a total 

supply of 100,000, and upper capacitates ranging from 10 to 1,000. The 

first twenty problems have 300 nodes and 1500 arcs. The second twenty 

problems have 500 nodes and 2500 arcs and the third twenty problems have 

1000 nodes and 5000 arcs. (Thi remaining fifteen problems are of varying 

size.) Each group of twenty problems contains the same underlying trans- 

shipment problem with four distinct extra inequality constraints (3). For 

each extra constraint, five different right hand slda values K are given, 

thus producing five problems with very similar structure. 

The four distinct extra constraints all contain 150 non-zero coefficients 

f . One of these extra constraints has all non-zero coefficients equal 

to unity. Another extra constraint has non-zero coefficients that range 

among the integer values between 1 and 5.  The third extra constraint has 

the same coefficient range, as the second, except the coefficients may not be 

integer valued. The fourth extra constraint has non-zero coefficients with 

values of -1 or +1. 

The fifteen other problems vary in size from 1000 nodes to 3000 nodes 

and from 3000 arcs to 15000 arcs. The number of non-zero coefficients in 

the extra constraint vary from .1 to 1.0 times the number of arcs, and the 
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v.iliifs of the coefficients ire similar to the preceding ones.  In rronstrast 

to the first sixty prohlems whose extra constraints are all inequalities, 

some of these problems contain equality constraints. 

Various combinations of starting, pivoting, and Lagrangean relaxation 

strategies were tested. A limitation of our stydy is that the effects of 

different buffers sizes and different strategies for purging the capacity 

buffer were not tested.  Thus, the computational results in this section 

pertain only to problems where all problem information is kept in central 

memory.  (These limitations are simply due to a lack of human and computer 

time to conduct all possible testing.)  Thus, as specific applications arise, 

the best rules in this study should be carefully analyzed to determine their 

appropriateness.  Recently we had an opportunity to do this on an application 

involving multiple objectives.  In this case the extra constraint consisted 

of keeping a weighted aggregate of objectives above some satisfactory level. 

For this particular application, the rules described in this study appeared 

to be best. 

8.4 TESTING SUMMARY 

The purpose of this section is to give the reader a summary of the range 

of solution tactics inveftigaced before picking a particular one to refine 

and streamline.  In order not to overwhelm the reader with large numbers of 

statistics and long descriptions of fifteen different solution strategies 

that proved to be unsuccessful for solving the test problems efficiently, 

this summary will concentrate only on the computational highlights. 

Table I  illustrates our findings for a subset of the twenty 500 node, 

2500 arc problems described in section 8.3.  The extra constraint for each 
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of these problems is n  "greater than or equal to" constraint.  The first 

two columns of Table 1  indicate the coefficient values and the right hand 

side v.iluc of tht extra constraint.  The column in Table I  entitled 

"Percent of Increase in Objective Function Value Using the Extra Constraint" 

specifies the percent change in the objective function value when the extra 

constraint is added to the underlying transshipment problem.  The next 

column in Table I  indicates the proportional increase in the objective 

function value when the slack variable is pivoted into the optimal basis 

for the singularly constrained transshipment problem (to change a non-integer 

solution into an integer solution). (Problem 10 in Table 1  yields an 

integer solution without requiring the step.) 

The columns of Table 1  titled "Best Results" contain statistics on 

the most effective solution approach found for the test problems.  The first 

two columns contain the total solution time and the total number of pivots 

required to solve the constrained problem.  The next two columns indicate 

the time and number of pivots spent searching for the value of the dual 

variable associated with the extra constraint (3) using the standard Lag- 

rangean relaxation approach [8,9,11,22].     This value was allowed to 

deviate from a global optimum by at most one unit.  That is, upon incor- 

porating the weighted constraint into the objective function, the value 

of the dual variable is sequentially increased or decreased according to 

whether the constraint is under or over-satisfied at optimality, until 

the under and over estimates of the dual variable are within one unit.  The 

standard one-dimensional Golden Search Rule [34] is used to find these 

estimates.  The last spanning tree basis of the search is then augmented 

to include the slack variable or an artificial variable of the extra con- 

straint (as appropriate), vhereupon the solution of the constrained problem 

ii i i ii !■■ ii i 
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l s Ini t lated. 

I'hf next to 1<:.SL |).i I r of columns of Table I  indicate the total solution 

time and total number of pivots required to solve the underlying transship- 

ment problem.  These are based on a one pass "modified row minimum start" [18], 

and a dynamic candidate list, outward-node most negative pivot rule [15,30]. 

These procedures have proven to be the most efficient for solving transship- 

ment problems [15,24,25,29,30]. 

The last two columns of Table I  indicate typical results obtained by 

various alterrative solution strategies that we tested for the constrained 

problem.  These results were obtained from a variety of approaches that 

begin with a modified row minimum start and augment the basis with an appro- 

priate slack or artificial variable at a strategically selected stage of 

the calculation. As indicated by the' results in Table I , the major draw- 

back of this class of strategies is the large number of pivots required 

to solve the problem.  (A large number of these pivots were degenerate.) 

Ten different types of start and pivot rules were tested with the al- 

ternative strategies. None of these rules substantially reduced the number 

of pivots.  The best of these approaches was to "introduce" the extra con- 

straint to the optimal basis for the underlying transshipment problem. 

Surprisingly, this approach always dominated an approach which introduced 

the extra constraint inuaediately upon encountering a basis in which it 

became satisfied. 

A significant factor in favor of using the Lagrangean approach is that 

most of the pivots are transshipment type pivots, and hence are much faster 

to make.  In particular, our results indicated that these pivots are about 

3 times faster than "case 2b" pivots (See section 4.). 
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Table II 
COMPUTATIONAL RESULTS ON LARGE PROBLEMS 

Probl em Size Total Solution Number of Transshipment Number of 
Nodes Arcs Time in Seconds Pivots Solution Time Pivots 

1000 5000 25.1 5583 12.4 4023 

1000 5000 25.6 5732 13.6 4378 

1000 5000 27.2 6113 13.5 4561 

1000 8000 28.1 6753 14.2 4214 

1000 15000 24.2 5341 13.1 3918 

2000 6000 65.8 6647 30.1 4418 

2000 8000 71.4 7543 38.2 5237 

2000 10000 68.3 6961 34.7 4726 

2000 12000 75.9 8114 41.2 6221 

2000 12000 81.9 9228 43.3 7182 

3000 8000 161.0 7549 91.3 5989 

3000 8000 180.1 8974 88.2 6741 

3000 10000 191.2 9114 97.8 6879 

3000 10000 196.6 9321 95.1 6752 

3000 12000 277.3 10251 153.4 8188 
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Computatlonal results demonstrating the effectiveness of I/O PNETS-I 

on larger probTems are shown in Table II.   For instance, the solution 

time for the 3000 node, 12,000 arc  singularly constrained transshipment 

prcblem is 277 seconds or about 5 minutes.  This is an LP problem of con- 

siderable sih-,   involving 3001 constraints and 12,001 variables (plus 

12,000 upper bound constraints). 

In general, our testing indicates that a singularly constrained trans- 

shipment problem requires epproximately twice as much time to solve as the 

underlying transshipment problem.  Thus, it appears that 1/0 PNETS-I is at 

least 75 times faster than a general purpose LP code for solving such problems 

Other findings of our study include the following: 

1. The 1/0 PNETS-I code requires only about 10% more solution time to 

solve a network problem that has no extra constraint than the 1/0 PNET-I 

code which is expressly designed for the pure network problem. 

2. The number of non-zero coefficients in the extra constraint affects 

the number of times the dual variable 6 changes and the number of "case 2b" 

pivots that are performed.  Consequently, solution time tends to increase 

as the number of non-zero coefficients increase. 

9.0  SUMMARY 

We have shown that the class of singularly constrained network prob- 

lems, which includes a variety of important practical applications beyond 

the rangt of pure network problems, can be solved on a highly efficient 

basis.  The I/O PNETS-I code developed in this study is capable of handling 

large-scale problems whose dimensions are well beyond the scope of existing 

LP codes (e.g., involving hundreds of thousands of variables), and has 

solved a 12,000 variable problem with 3,000 constraints (nodes) in under 
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5 minutes.  Testing also indicates that this code can obtain integer 

solutions that lie on the average within .007 of the continuous optimum 

with negligible additional effort. 
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